- finitely axiomatizable class
- матем.конечно аксиоматизируемый класс
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Elementary class — In the branch of mathematical logic called model theory, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first order theory. Contents 1 Definition 2 Conflicting and alternative terminology … Wikipedia
Pseudoelementary class — In logic, a pseudoelementary class is a class of structures derived from an elementary class (one definable in first order logic) by omitting some of its sorts and relations. It is the mathematical logic counterpart of the notion in category… … Wikipedia
List of first-order theories — In mathematical logic, a first order theory is given by a set of axioms in somelanguage. This entry lists some of the more common examples used in model theory and some of their properties. PreliminariesFor every natural mathematical structure… … Wikipedia
logic, history of — Introduction the history of the discipline from its origins among the ancient Greeks to the present time. Origins of logic in the West Precursors of ancient logic There was a medieval tradition according to which the Greek philosopher … Universalium
Relation algebra — is different from relational algebra, a framework developed by Edgar Codd in 1970 for relational databases. In mathematics, a relation algebra is a residuated Boolean algebra supporting an involutary unary operation called converse. The… … Wikipedia
Admissible rule — In logic, a rule of inference is admissible in a formal system if the set of theorems of the system is closed under the rule. The concept of an admissible rule was introduced by Paul Lorenzen (1955).DefinitionsThe concept of admissibility, as… … Wikipedia
Kripke semantics — (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non classical logic systems created in the late 1950s and early 1960s by Saul Kripke. It was first made for modal… … Wikipedia
Axiom schema of replacement — In set theory, the axiom schema of replacement is a schema of axioms in Zermelo Fraenkel set theory (ZFC) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite… … Wikipedia
Reflection principle — This article is about the reflection principles in set theory. For the reflection principle of complex analysis, see Schwarz reflection principleIn set theory, a branch of mathematics, a reflection principle says that it is possible to find sets… … Wikipedia
Decidability (logic) — In logic, the term decidable refers to the decision problem, the question of the existence of an effective method for determining membership in a set of formulas. Logical systems such as propositional logic are decidable if membership in their… … Wikipedia
Finite model property — In logic, we say a logic L has the finite model property (fmp for short) if there is a class of models M of L (i.e. each model M is a model of L) such that any non theorem of L is falsified by some finite model in M. Another way of putting this… … Wikipedia